8 research outputs found

    Molecular Microfluidic Bioanalysis: Recent Progress in Preconcentration, Separation, and Detection

    Get PDF
    This chapter reviews the state-of-art of microfluidic devices for molecular bioanalysis with a focus on the key functionalities that have to be successfully integrated, such as preconcentration, separation, signal amplification, and detection. The first part focuses on both passive and electrophoretic separation/sorting methods, whereas the second part is devoted to miniaturized biosensors that are integrated in the last stage of the fluidic device

    Overview of Materials for Microfluidic Applications

    Get PDF
    For each material dedicated to microfluidic applications, inherent microfabrication and specific physico‐chemical properties are key concerns and play a dominating role in further microfluidic operability. From the first generation of inorganic glass, silicon and ceramics microfluidic devices materials, to diversely competitive polymers alternatives such as soft and rigid thermoset and thermoplastics materials, to finally various paper, biodegradable and hydrogel materials; this chapter will review their advantages and drawbacks regarding their microfabrication perspectives at both research and industrial scale. The chapter will also address, the evolution of the materials used for fabricating microfluidic chips, and will discuss the application‐oriented pros and cons regarding especially their critical strategies and properties for devices assembly and biocompatibility, as well their potential for downstream biochemical surface modification are presented

    Electrochemical detection in microfluidic devices : study of carbon-based nanomaterials as transducers

    No full text
    Dans le cadre d’une thèse en cotutelle qui a démarré en Janvier 2013, j'ai développé des biopuces ultra-sensibles pour la détection de maladies infectieuses (Tuberculose et Hepatite C). Ce sujet, qui combine recherche fondamentale et recherche appliquée dans pour le diagnostic précoce de maladies, avait pour but la détection rapide d’espèces chimiques fortement diluées dans un liquide biologique. Cette détection se fait de manière électrochimique, grâce à l’utilisation des nanomatériaux carbonés innovants (feuillets de graphène, nanotubes de carbone (NTCS)) qui sont dotés d’une conductivité électronique élevée. J’intègre ces nanomatériaux par des procédés de micro/nanofabrication sur des électrodes de travail dans des cellules microfluidiques. J'ai démontré qu'en combinant un haut flux et un transducteur en NTCs qu'il est possible d'augmenter de 3 ordres de grandeur la sensibilité de détection dans la chambre fluidique (article soumis à LoC). J'ai aussi étudié par spectroscopîe d'impédance la nature du transfert des charges entre l'électrolyte et la graphène (2ème article en cours de rédaction). Mon doctorat a donc validé une technologie innovante pour les biocapteurs miniaturisés à ADN, avec un fort potentiel de valorisation, dans le domaine de la santé et de l’environnement.As part of my thesis under joint supervision between UPS and Sfax Universities which started in January 2013, I developed ultra-sensitive biochips for the detection of infectious diseases (Tuberculosis and Hepatitis C). This subject, which combines basic and applied research for the early detection of diseases, aimed rapid detection of highly diluted chemical species such as DNA in a biological fluid. This detection is done electrochemically, through the use of innovative carbon nanomaterials (graphene layers, carbon nanotubes (NTCS)) which are provided with a high electron conductivity. I have integrated these nanomaterials by micro / nano-fabrication processes on working electrodes in microfluidic cells. I demonstrated that by combining a high flow and a that CNTs as transducer, the sensitivity of detection in the fluid chamber can be increased by 3 orders of magnitude (Article submitted to Lab on Chip journal). I also studied by impedance spectroscopy the nature of the charge transfer between the electrolyte and the graphene (2nd article being drafted). My PhD has validated an innovative technology for miniaturized biosensors DNA, with a strong development potential in the field of health and the environment

    Détection électrochimique en puce microfluidique : importance des transducteurs nanocarbonés

    No full text
    As part of my thesis under joint supervision between UPS and Sfax Universities which started in January 2013, I developed ultra-sensitive biochips for the detection of infectious diseases (Tuberculosis and Hepatitis C). This subject, which combines basic and applied research for the early detection of diseases, aimed rapid detection of highly diluted chemical species such as DNA in a biological fluid. This detection is done electrochemically, through the use of innovative carbon nanomaterials (graphene layers, carbon nanotubes (NTCS)) which are provided with a high electron conductivity. I have integrated these nanomaterials by micro / nano-fabrication processes on working electrodes in microfluidic cells. I demonstrated that by combining a high flow and a that CNTs as transducer, the sensitivity of detection in the fluid chamber can be increased by 3 orders of magnitude (Article submitted to Lab on Chip journal). I also studied by impedance spectroscopy the nature of the charge transfer between the electrolyte and the graphene (2nd article being drafted). My PhD has validated an innovative technology for miniaturized biosensors DNA, with a strong development potential in the field of health and the environment.Dans le cadre d’une thèse en cotutelle qui a démarré en Janvier 2013, j'ai développé des biopuces ultra-sensibles pour la détection de maladies infectieuses (Tuberculose et Hepatite C). Ce sujet, qui combine recherche fondamentale et recherche appliquée dans pour le diagnostic précoce de maladies, avait pour but la détection rapide d’espèces chimiques fortement diluées dans un liquide biologique. Cette détection se fait de manière électrochimique, grâce à l’utilisation des nanomatériaux carbonés innovants (feuillets de graphène, nanotubes de carbone (NTCS)) qui sont dotés d’une conductivité électronique élevée. J’intègre ces nanomatériaux par des procédés de micro/nanofabrication sur des électrodes de travail dans des cellules microfluidiques. J'ai démontré qu'en combinant un haut flux et un transducteur en NTCs qu'il est possible d'augmenter de 3 ordres de grandeur la sensibilité de détection dans la chambre fluidique (article soumis à LoC). J'ai aussi étudié par spectroscopîe d'impédance la nature du transfert des charges entre l'électrolyte et la graphène (2ème article en cours de rédaction). Mon doctorat a donc validé une technologie innovante pour les biocapteurs miniaturisés à ADN, avec un fort potentiel de valorisation, dans le domaine de la santé et de l’environnement

    Steady‐State Electrocatalytic Activity Evaluation with the Redox Competition Mode of Scanning Electrochemical Microscopy: A Gold Probe and a Boron‐Doped Diamond Substrate

    No full text
    International audienceIn the current context of energetic transition, investigations of alternative complex systems require tools such as scanning electrochemical microscopy (SECM), offering interesting opportunities as an electroanalytical technique to evaluate innovative catalysts. Herein, we demonstrate how a judicious choice of probe and substrate materials opens up improved performances to achieve steady‐state measurements for oxygen reduction reaction (ORR) catalytic activity detection through redox competition scanning electrochemical microscopy (RC‐SECM). On the probe side, we show that using gold enhances the stability of the local oxygen concentration detection in comparison to the regularly used platinum one. On the substrate side, we evaluate boron‐doped diamond as an appealing alternative to classical support substrate, that shows a low ORR activity, high stability and very good reusability. This work introduces an alternative approach for quantitative measurements with SECM, improving measurement ease, comfort and reproducibility, thus paving the way towards standardized benchmarking and numerical simulation‐based parameter extraction
    corecore